Revitalizando un antiguo PC

Una de las causas de que haya estado un cierto tiempo alejado sin publicar nada es que, a 31 de diciembre, dejaba la compañía donde he trabajado los últimos 27 años. La verdad es que la dejo en unas condiciones magníficas y, en ese aspecto, no tengo ninguna queja. En la empresa me han dejado llevarme el PC corporativo que tenía, eso sí, tras el preceptivo borrado de los programas licenciados y formateo del disco duro.

El PC en cuestión es un Dell Latitude E5430 que trae un I5 a 2,60GHz y 4GB de RAM. La batería todavía aguanta aunque está empezando a pedir oxígeno. El resto supongo que es bastante estándar.

Latitude-E5420

El PC lo voy a emplear para trastear un poco incluyendo practicar pen-testing pero, para esos menesteres, prepararé un pincho USB con Kali. Para aprovecharlo como PC de sobremesa, tenía en mente instalar otro desktop Linux.

Lo primero que me voy a plantear es actualizar el hardware, en especial, ampliar la memoria RAM y cambiar el disco duro por un SSD. Este último cambio, además de proporcionar velocidad, va a permitir reducir la necesidad de potencia y alargar, si es posible, la vida de la batería.

Encontrar el disco SSD fue fácil, me acerqué al MediaMarkt y estuve mirando un poco que es lo que tenían y, al final, me compré un Toshiba OCZ TL100 de 240GB (76€). No es un prodigio de velocidad pero creo que va a cumplir con lo que se espera de él.

toshiba-ocz-tl100-240gb-box

Lo de la RAM ya es otra historia. Después de un peregrinaje por distintas tiendas he visto que nadie la tiene en stock y que el precio de los dos módulos de 8GB supera los 120€. Así que la solución será comprarla on-line en un par de meses.

Nunca he cambiado el disco duro de un portátil así que no se que es lo que me va a esperar. La idea de este post, es ir recogiendo el relato para poder volver a hacerlo. Antes de ponerme con ello, visualizo un par de videos en Youtube para, por lo menos, saber como abrir el cacharro.

SL270304

El primer paso es quitar la batería. Este parece sencillo. y no requiere ni esfuerzo ni herramientas.

SL270306

A continuación procedo a sacar la tapa posterior. Parece que está sujeta únicamente con dos tornillos. Sin ningún esfuerzo, una vez liberados los tornillos, la tapa se retira con facilidad y puedo ver tanto la memoria como el disco duro.

SL270307

El disco duro tiene una solapa de plástico transparente de la que tengo que tirar para sacarlo. Primer intento y ni pá dios. Con las gafas de leer puestas me doy cuenta que hay cuatro tornillos que retirar.

SL270310

El propio disco duro, está fijado por cuatro tornillos a una carcasa. Se trata de un Seagate Momentus Thin de 320GB.

SL270313

Una vez desembalado el SSD me pongo a montarlo en la carcasa y luego en el espacio correspondiente del portátil. La primera en la frente, lo he montado en la carcasa al revés y ahora no entra. De nuevo a desatornillarlo de la carcasa y darle la vuelta. Pasadas estas tribulaciones, consigo montar el disco duro, montar la tapa trasera y verificar que la BIOS reconoce el nuevo disco duro.

SL270315

Listo el equipo para la instalación del software. Voy a instalarle un sistema operativo Linux, en concreto la distribución LXLE Desktop version 16.04.1 que está basada en Lubuntu.

Creando un WIDS casero (y IV)

En el post anterior de la serie, detallé cómo configuré la Raspberry Pi para actuar de sonda en la captura de paquetes 802.11 empleando Kismet (en modo drone). El objetivo es analizar esos paquetes para detectar la presencia de puntos de acceso inalámbricos no autorizados.

En este post, último de la serie, voy a describir como configuro el drone de Kismet en la Rasp y el servidor y el cliente en una máquina virtual para comprobar que puedo capturar los paquetes inalámbricos. En futuros posts iré viendo qué capacidades tiene esta solución.

En la arquitectura de Kismet, el drone captura los paquetes a través de la interfaz inalámbrica y el servidor se conecta al drone para procesar los paquetes que van a ser presentados a través de una aplicación cliente.  En mi entorno, servidor y cliente se ejecutarán en una una máquina virtual sobre Kali Linux, conectada a la DMZ de mi laboratorio virtual. Voy a obviar los detalles de la instalación de Kali para centrarme en el WIDS. La dirección IP de la máquina donde se encuentra el server será 10.1.4.9.

Lo primero que voy a hacer es comprobar que existe conectividad entre la rasp y Kali:

Imagen27

Imagen28

Hasta ahora todo bien, voy a configurar ahora el drone en la Rasp. Lo que voy a hacer es poner, bajo control de versiones, los ficheros de configuración de kismet para poder editarlos cómodamente en el PC.

En la Raspberry edito el fichero /usr/local/etc/kismet_drone.conf y configuro la conectividad del drone:

Imagen29

En kali, edito el fichero /etc/kismet/kismet.conf y configuro, como fuente de paquetes el drone:

Imagen30

Arranco el drone en la Rasp en modo daemon y compruebo que esté a la escucha en el puerto 2502:

Imagen31

Imagen32

Ahora toca el turno al cliente y al server en Kali. En una consola introduzco el comando kismet y, despues de un par de cuestiones relacionadas con el arranque del server veo algo así:

Imagen33

Esto está conseguido.

Creando un WIDS casero (III)

Tras el fracaso con el viejo router D-Link he decidido no darme por derrotado e intentarlo con la Raspberry Pi. Ya comente en otra parte que tengo una Raspberry Pi Model B con una instalación fresca de Raspbian que utilizo, fundamentalmente, para jugar con sensores. Bien, ahora voy a emplearla como sensor de tramas de 802.11.

El viejo router lo voy a emplear para que haga de punto de acceso falso y para otras pruebas de penetración que tengo en mente.

La única duda que me surge es si la tarjeta WiFi USB que tengo es de las soportadas por Kismet. Si no lo fuera, ya veríamos que rumbo tomamos a futuro pero lo que tengo claro es que se me ha metido en la cabeza construir el maldito WIDS.

Lo primero que voy a hacer es actualizar el Raspbian:

Imagen14

Después de un buen rato tengo mi dispositivo actualizado.

El siguiente paso es comprobar si la interfaz WiFi que tengo está soportada por Kismet. Fundamentalmente, lo que importa es ver si se puede poner en modo monitor.

El dispositivo WiFi que tengo en mi Rasp es un dispositivo USB como éste:

Imagen16

Le echo un ojo, en primer lugar, a la configuración de las interfaces de red (comando ifconfig):

Imagen15

La interfaz wireless, como no podía ser de otra forma, es la wlan0. Voy a mirar ahora en los dispositivos USB (comando lsusb):

Imagen17

El dispositivo es el número 004 y es del fabricante Ralink Technology y se trata de un adaptador inalámbrico modelo RT5370. Si quisiéramos obtener información más detallada podríamos usar el comando:

lsusb –D /dev/bus/usb/001/004

Miramos los parámetros del dispositivo inalámbrico con iwconfig:

Imagen18

Por último, comprobamos si el adaptador puede ponerse en modo monitor lo que permite capturar los paquetes:

Imagen19

Todo parece OK así que voy a instalar Kismet. La instalación de Kismet voy a hacerla por el camino largo, esto es, tal y como se describe en la documentación de Kismet: me voy a descargar el código fuente, realizar la configuración previa, compilarlo y, por último, instalar el producto.

Para empezar instalo algunas dependencias:

Imagen20

Ahora me voy a descargar, desde la web de Kismet la última versión estable de código fuente que, en el momento de escribir esto, es la 2016-07-R1. Una vez descargada, voy a usar WinSCP para copiarla a la Raspberry.

Imagen21

Extraemos y configuramos:

Imagen22

Imagen23

Todo parece correcto así que puedo lanzar el make y esperar (la compilación se tomará su tiempo).

Imagen24

A continuación lanzo la instalación. Kismet debe estar instalado en /usr/local/bin

Imagen25

Imagen26

Por último, para completar la instalación, voy a añadir el usuario pi al grupo kismet.

sudo usermod -a -G kismet pi

Rearranco la pi y me meto con la configuración.

Creando un WIDS casero (II)

En la primera parte de la historia me quedé con mi flamante router D-Link 2740B recién flasheado con OpenWRT. Se me olvidó contar, al final de ese post, que lo último que hice fue una copia de seguridad para poder volver al punto donde lo dejé si fuera menester.

El objetivo de este esfuerzo es construir un sistema de detección de intrusiones en la red inalámbrica basado en un antiguo router y el software de Kismet. Kismet es un software que, de forma pasiva, es capaz de detectar los dispositivos y redes inalámbricas (802.11*) que hay en su rango de detección. Es una herramienta de captura de información muy útil pero, llegar a construir un sistema de detección de intrusiones a partir de estos mimbres es, más que nada, realizar una prueba de concepto o de factibilidad. El resultado de esta prueba de concepto podría ser una solución de seguridad para redes WiFi económicamente muy accesible (si la comparamos con soluciones de Meraki, Aruba, Fortinet o Mojo Networks) y que podría ser muy válida para PYMEs u oficinas o delegaciones pequeñas.

Menos rollos y vamos al tajo. Kismet tiene tres componentes:

  1. Kismet Drone que captura las tramas radio y las envía al servidor.
  2. Kismet Server que almacena las tramas capturadas.
  3. Kismet Client que proporciona acceso a los datos almacenados en el servidor.

En principio la idea es instalar el drone en el router D-Link y el servidor y cliente en un servidor virtual desplegado en el entorno ESXi del lab casero.

En este post, voy a abordar el intento de instalación del Kismet Drone en el router D-Link. Si este intento es satisfactorio, abordaré en posts posteriores la configuración del servidor y cliente Kismet.

En primer lugar, me conecto a través de SSH al router, empleando, como no podía ser de otra forma, putty:

Imagen8

Navego hasta el fichero /etc/network/config para ver la configuración de red que tengo:

Imagen9

Como vemos, no está configurada la red inalámbrica (todavía). Abordamos, a continuación, la instalación de Kismet Drone. Entro en LuCI y me voy a la opción System > Software:

Imagen10

y pulso el botón Update list:

Imagen11

Ahora busco kismet drone en la lista de paquetes disponibles …

Imagen12

y le doy a la opción “Install” …

Imagen13

¡Cagada!, el equipo no tiene espacio suficiente para la instalación de los paquetes necesarios.

He probado distintas alternativas (desinstalar LuCI, ir a una versión de OpenWRT más antigua, etc) y sigue sin tener espacio. El cacharro es verdaderamente antiguo y no queda más que reconocer la derrota.

Pero como sigo empeñado en intentarlo, voy a probar con la Raspberry Pi como drone. Más en el siguiente post.

Creando un WIDS casero (I)

Antes de nada aclarar, para quien no lo sepa, que WIDS son las siglas, en inglés, de sistema de detección de intrusiones inalámbricas (Wireless Intrusion Detection System). Un WIDS es, por lo tanto, un dispositivo que monitoriza las redes inalámbricas para detectar la presencia de puntos de acceso no autorizados y que puede tomar las contramedidas necesarias frente a esta situación (prevención de intrusiones).

La idea es, aprovechando que con el cambio en la red doméstica, mi antiguo router inalámbrico D-Link 2740B (que hacía las funciones de bridge inalámbrico) se ha quedado en paro, darle un nuevo servicio. Voy a utilizarlo como sonda de detección de intrusiones en mi red inalámbrica. No es que me haya vuelto paranoico es, simplemente, que quiero aprender algo.

d-link-dsl-2740b.3391432

Lo que pretendo hacer es montar un entorno de detección basado en Kismet que es una herramienta de código fuente abierto que se encarga de la captura y proceso de tramas 802.11. El principal problema al que me enfrento es que el router, tal y como viene de fábrica, soporta los estándares antiguos (802.11b/g) y no los más nuevos. El router hace como equipo de captura de tramas y tendré que montar un servidor específico (virtual) para el análisis de esas tramas. Veremos hasta dónde somos capaces de llegar.

En esta serie de post voy a intentar ser más preciso y detallado lo que, sin duda, va a redundar en una mayor longitud de los mismos. En esta primera parte, voy a describir el proceso de flashear el equipo y dejarlo listo para la detección.

El primer paso, y esto es importante, es pensar un poco por anticipado los pasos a seguir para no perder tiempo rehaciendo cosas. Para flashear el equipo necesito:

  • La imagen que voy a poner en el equipo.
  • Un equipo desde el que conectarme, transferir la imagen y realizar las primeras y más básicas configuraciones.

Descubrir la imagen de OpenWrt no es tarea fácil. La web, en formato Wiki no ayuda mucho y uno acaba dando mil vueltas. En primer lugar entro en la página correspondiente a mi modelo de router y veo que el chip que tiene es un BCM6358.

Busco, a continuación, en la tabla de hardware de la web de OpenWrt, los detalles técnicos del equipo y me lleva a esta página donde aparece el enlace a la imagen a descargar.

Imagen2

El equipo desde el que me voy a conectar al router para flashearlo va a ser mi Raspberry Pi con sistema operativo Raspbian. Fundamentalmente porque, como está encima de la mesa, es más fácil realizar los tejemanejes de cables y cambios de direcciones IP necesarios para poder configurar el router. Lo primero que hago es arrancar la Rasp y, a través de WinSCP copiar la imagen recién descargada a la Rasp.

Voy a flashear el router. En primer lugar, lo que necesito hacer es arrancarlo en el modo que permite la carga de imagen flash. Los pasos que sigo son:

  1. Conecto la fuente de alimentación del router.
  2. Conecto el cable de red de la Rasp al puerto 1 del router.
  3. Presiono con un objeto punzante el botón de reset del router y, con este botón presionado:
  4. Arranco el router (botón de power).
  5. El router se enciende y la luz de power parpadea, al cabo de unos segundos se queda fija en color rojo, momento en el que dejo de presionar el botón de reset.

En principio, ya me puedo conectar al router para subir e instalar la imagen de OpenWRT. Por defecto, el router tiene la dirección IP 192.168.1.1 y la interfaz eth0 de mi Rasp la dirección 192.168.1.12 por lo que debería haber conectividad.

Abro un navegador en la Rasp y me conecto a la dirección IP del router y voilá:

2016-09-11-103843_1360x768_scrot

Siguiente paso, pulso el botón “Elegir Archivo” y navego hasta donde se encuentra la imagen a instalar:

2016-10-17-225331_1360x768_scrot

Selecciono el archivo correspondiente a la imagen y pulso el botón “Update Software”. En principio da un error pero veo que el LED de encendido del router parpadea al igual que el LED de la interfaz a la que está conectado el cable Ethernet de la Rasp. Cuando el LED de encendido del router se queda fijo me conecto de nuevo por http a la dirección IP del router y accedo a la página de login de Luci (la interfaz web de OpenWRT). Introduzco el nombre de usuario (root) y sin contraseña, entro en el entorno OpenWRT:

2016-10-17-225654_1360x768_scrot

Lo primero que hago es configurar una contraseña para root:

2016-10-17-230123_1360x768_scrot

Y, a continuación, una dirección IP que me permita conectar este equipo a la red doméstica (la dirección 192.168.1.1 es la del router de acceso a internet).

2016-10-17-230835_1360x768_scrot

A continuación apago el router, conecto la interfaz ethernet de la Rasp al switch y la boca 1 del router a otra boca libre del switch y rearranco el router. Ahora, debería poder acceder desde mi PC (o cualquier otro equipo de la red) a la interfaz web de OpenWRT:

Imagen5

Imagen7

En el siguiente post de esta serie voy a entrar a transformar en router en una sonda de paquetes WiFi para detectar intrusiones.

La nueva red

Como soy un poco culo inquieto, he decidido cambiar de nuevo la red doméstica. En abril había montado la conectividad de mi entorno lab sobre la base de un antiguo router WiFi tuneado con OpenWRT. El entorno lab era una subred (192.168.2.0/24) que se conectaba a la red doméstica a través del susodicho router en modo repetidor.

Lo cierto es que la disposición funcionaba pero el rendimiento del enlace radio era muy mejorable. Para mejorar el rendimiento, decidí cambiar la arquitectura de la red.

En primer lugar adquirí un par de PLCs de la marca Devolo. En concreto, el producto dLAN 1200+ Starter Kit PLC que proporciona conectividades de Gb Ethernet sobre la red eléctrica. El aspecto que tienen los cacharros es el siguiente:

devolo-dlan-1200-plc-pl1110856_0

Un poco aparatosos pero, la realidad es que funcionan muy bien. Empleando estos PLCs puedo conectar a velocidades de Gb el router de acceso a Internet con los dispositivos que tengo en el lab y descargar la WiFi del lab.

Adicionalmente, para proporcionar conectividad, adquirí un switch de 8 puertos, en concreto un Netgear GS308 de 8 puertos 10/100/1000Mb. Sin embargo yo creo que es mas un hub que un switch.

5168e9kwtrL._SL1200_

Una vez establecidas todas las conexiones, fue necesario reconfigurar la red. Ahora, los equipos de la red cableada están dentro de la red doméstica (192.168.1.0/24) y no es necesaria una segunda subred para el lab. Esto requiere quitar alguna ruta estática configurada en el router de acceso a Internet así como la configuración de las direcciones IP de las interfaces del servidor ESXi.

Otra ventaja es que el PC de sobremesa que tengo está accesible a toda la casa sin necesidad de cambiar la conexión. Esto es importante ya que el PC actúa como servidor de impresión y tiene varios discos compartidos. Pot otra parte, al liberar el router OpenWRT voy a poder empezar a jugar con Kismet.

En resumen, el aspecto que tiene mi red doméstica es ahora así:

ca1

Mini estación meteorológica

Después del éxito del termómetro me he venido arriba y he decidido montar una mini estación meteorológica que me de lecturas de temperatura, presión barométrica y humedad relativa.

Además quiero que me dé las máximas y mínimas de estos parámetros y que presente la información en un display LED de 16 columnas y 2 filas (casi ná).

En principio, parece sencillo, conectar el display y los sensores, leer los valores de los sensores y presentar esos valores, con el formato apropiado, en el display.

Adicionalmente, por medio de un botón, mi  estación deberá poder ir cambiando la presentación de valores actuales a valores máximos y de aquí a valores mínimos.

Empecemos por la lista de materiales:

  • Un Arduino UNO.
  • Una placa de prototipo.
  • Un display LED de 16 columnas y dos filas (TC1602A-09T):

Imagen1

  • Un potenciómetro de 10K Ohmios para controlar el contraste del display:

potentiometer-10k-chiosz-robots-3

  • Un sensor de temperatura y presión barométrica BMP180:

bmp180-barometric-pressure-temperaturealtitude-sensor

  • Un sensor de humedad DHT11:

DHT11

  • Un botón para el cambio de modo de display:

00097-03-L

  • Cables, etc.

La siguiente tabla recoge las conexiones realizadas:

Origen

Destino

VSS display GND
VDD display +5V
V0 display Pin central potenciómetro
RS display Pin 7 Arduino
RW display GND
E display Pin 8 Arduino
D4 display Pin 9 Arduino
D5 display Pin 10 Arduino
D6 display Pin 11 Arduino
D7 display Pin 12 Arduino
A display +5V
K display GND
Pin izda. potenciómetro GND
Pin dcha. potenciómetro +5V
Botón +5V
Botón Pin 4 Arduino
SCL BMP180 Pin A5 Arduino
SDA BMP180 Pin A4 Arduino
VCC BMP180 +3.3V
GND BMP180 GND
SIG DHT11 Pin 5 Arduino
VCC DHT11 +3.3V
GND DHT11 GND

El esquema de conexionado es como se representa en los siguientes diagramas:

meteo_bb

meteo_schem

Y el aspecto que tiene es el de la imagen siguiente:

SL270261

El código está en GitHub junto con las hojas de especificaciones de los componentes empleados.